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Exercice 1: Analyse dimensionnelle
Une méthode très importante en physique est l'analyse dimensionnelle. Les lois de la physique s'ex-
priment sous forme d'équation du type :

Membre de gauche = Membre de droite

Une telle égalité implique que :
� Les deux membres sont de même nature c'est-à-dire qu'ils sont tous deux soit des scalaires, soit

des vecteurs, soit des tenseurs de même ordre.
� Leurs dimensions sont identiques.
Assurez-vous que la formule f⃗ = −∇⃗p véri�e ces deux conditions, avec f⃗ une densité volumique de
force.

Solution:

On véri�e alors que
� La nature des quantités à gauche et à droite est la même : Il s'agit du vecteur de force

à gauche et du gradient de la pression à droite. Le gradient d'un scalaire est bien un
vecteur et ce point est alors satisfait.

� Les unités doivent être les mêmes. A droite, la pression peut être exprimée par une force
par unité de surface, tandis que le gradient est une dérivée spatiale et a donc l'unité de
l'inverse d'une longueur. f⃗ doit alors forcément être une force par unité de volume :

f = ∇⃗p

F
V

=
1

L

F
S

=
F
LS

=
F
V

Avec F une force, V un volume, L une longueur et S une surface.

Exercice 2: Théorème de la Divergence

(a) Soit un champ vectoriel u⃗ stationnaire dé�nit dans R3 muni d'un repère orthonormé Oxyz. Ce
champ vectoriel est dé�ni tel que u⃗(r⃗) = (ux, uy, uz) avec (ux, uy, uz) = (1, 0, 0), ∀(x, y, z) ∈
R3. Dessinez le champ vectoriel dans le plan z = 0. Que vaut la divergence ∇⃗ · u⃗ ?

(b) Soit un cube d'arête a, surface S et volume V . Deux sommets sont en (0, 0, 0) et (a, 0, 0).
Calculez {

S

u⃗ · dS⃗

et véri�ez que le résultat est équivalent à

y

V

(∇⃗ · u⃗)dV
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(c) Refaites le calcul de
v

S u⃗ · dS⃗ pour u⃗ = (x, 0, 0) et véri�ez que le résultat est équivalent à

y

V

(∇⃗ · u⃗)dV

Solution:

(a) Le champ vectoriel sur le plan z = 0 est représenté dans la �gure ci-dessous :

La divergence du u⃗ = u⃗(x, y, z) est dé�nie comme :

∇⃗ · u⃗ =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

Toutes les dérivées partielles sont nulles parce que le champ vectoriel u⃗ est constant sur le
plan. Donc ∇⃗ · u⃗ = 0.

(b) L'intégrale du champ u⃗ sur la surface latérale du cube est nulle. L'intégrale peut être
décomposée comme la somme des intégrales sur chaque surface latérale :

{

S

u⃗ · dS⃗ =

x
Sx,1

+
x

Sx,2

+
x

Sy,1

+
x

Sy,2

+
x

Sz,1

+
x

Sz,2

 u⃗ · dS⃗
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La fonction à intégrer est dé�nie comme le produit scalaire entre la vitesse du �uide u⃗ de
norme unitaire et l'élément de surface dS⃗ :

u⃗ · dS⃗ = dS cos(θ)

avec θ l'angle entre les vecteurs u⃗ et dS⃗.

Cette expression se simpli�e quand les deux vecteurs sont perpendiculaires (vitesse parallèle
à la surface) :

u⃗ · dS⃗ = dS cos(90◦) = 0

et quand ils sont parallèles entre eux (vitesse perpendiculaire à la surface, θ = 0◦ ou
θ = 180◦) :

u⃗ · dS⃗ = dS cos(0◦) = dS

u⃗ · dS⃗ = dS cos(180◦) = −dS

Donc, le signe est +1 si dS⃗ et u⃗ pointent dans la même direction, -1 s'ils pointent dans les
directions opposées.

Puisque le champ de la vitesse est parallèle aux faces du cube Sy,1, Sy,2, Sz,1 et Sz,2, les
intégrales correspondantes sont nulles. Les deux autres intégrales se compensent :

{

S

u⃗ · dS⃗ =
x

Sx,1

u⃗ · dS⃗ +
x

Sx,2

u⃗ · dS⃗

=
x

Sx,1

(−dS) +
x

Sx,2

dS

= −S + S

= 0

Comme ∇⃗ · u⃗ = 0, on trouve bien
t

V (∇⃗ · u⃗)dV = 0. Les résultats sont donc consistants
avec le Théorème de la Divergence.

(c) La situation est très similaire à ci-dessus ; la seule di�érence est que maintenant la norme
du champ vectoriel dépend de la position et les contributions à l'intégrale par les faces Sx,1

et Sx,2 ne se compensent plus :

{

S

u⃗ · dS⃗ =
x

Sx,1

u⃗ · dS⃗ +
x

Sx,2

u⃗ · dS⃗

=
x

Sx,1

0 dS +
x

Sx,2

adS

= S · a
= a3
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L'évaluation de l'intégrale volumétrique de ∇⃗ · u⃗ conduit au même résultat :

y

V

(∇⃗ · u⃗)dV =
y

V

∂ux
∂x

dV

=
y

V

dV

= a3

avec dV l'élément de volume.

Exercice 3: Champ de Vitesse
Nous considérons l'écoulement d'un �uide parfait et incompressible (ρ = ρ0 = constante) avec le
champ de vitesse suivant :

u⃗(r⃗, t) = −ωye⃗x + ωxe⃗y

ω est une constante positive qui s'exprime en s−1.

(a) Indiquez, dans le plan xy, le vecteur u⃗ aux points suivants :

(x, y) = (1, 0); (x, y) = (2, 0); (x, y) = (0, 1); (x, y) = (0, 2);

(x, y) = (−1, 0); (x, y) = (−2, 0); (x, y) = (0,−1); (x, y) = (0,−2);

Pour les besoins du dessin, supposez ω = 1.

(b) Que pouvez-vous dire sur la valeur de ∂u⃗
∂t ?

(c) Déterminez l'accélération d'un élément �uide en un point (x, y) arbitraire.

(d) Démontrez que ce champ de vitesse satisfait l'équation de continuité.

(e) Utilisez l'équation d'Euler pour déterminer l'expression du champ scalaire de pression p(r⃗, t).
Négligez la force de gravité dans l'équation d'Euler et supposez que p = p0 en r⃗ = 0⃗.

Solution:

(a) La représentation du vecteur vitesse aux points demandées et avec la mise a l'échelle sug-
gérée est visible sur la �gure ci dessous.

(b) L'écoulement étant caractérisé par un champ de vitesse ne dépendant pas du temps, l'écou-
lement peut être considéré comme stationnaire. On a donc ∂u⃗

∂t = 0.
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(c) L'accélération d'un élément �uide est donnée par la formule

a⃗ =
Du⃗

Dt

=

(
∂

∂t
+ u⃗ · ∇⃗

)
u⃗

=
∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗

Or on a vu precedement que ∂u⃗
∂t = 0, donc

a⃗ =
(
u⃗ · ∇⃗

)
u⃗

=

(
ux

∂

∂x
+ uy

∂

∂y

)
u⃗

=

(
ux

∂ux
∂x + uy

∂ux
∂y

ux
∂uy

∂x + uy
∂uy

∂y

)

=

(
−ω2x
−ω2y

)
Donc

a⃗ = −ω2xe⃗x − ω2ye⃗y

(d) Le �uide étant incompressible, sa densité volumique est constante et on a ρ = ρ0. L'équation
de continuité s'écrit :

∂ρ

∂t
+ ∇⃗ · (ρu⃗) = ∂ρ

∂t︸︷︷︸
=0

+ρ∇⃗ · u⃗+ u⃗ · ∇⃗ρ︸ ︷︷ ︸
=0

Il s'agit donc de s'assurer que ρ∇⃗ · u⃗ = 0, ce qui est bien le cas :

ρ∇⃗ · u⃗ = ρ

(
∂ux
∂x

+
∂uy
∂y

)
= 0 (1)

L'équation de continuité est donc bien satisfaite !

(e) Le �uide étant parfait, il n'y pas d'e�ets liés à la viscosité. En négligeant la gravité, l'équa-
tion d'Euler nous donne

ρ

(
∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗

)
= −∇⃗p

Donc, l'écoulement étant stationnaire (∂u⃗∂t = 0⃗), on a

ρ
(
u⃗ · ∇⃗

)
u⃗ = −∇⃗p

ρ
(
u⃗ · ∇⃗

)
u⃗ a été calculé dans la question (c) de cet exercice.

Projetons maintenant l'équation d'Euler selon les directions e⃗x et e⃗y :

� selon e⃗x : −ρω2x = − ∂p
∂x

� selon e⃗y : −ρω2y = −∂p
∂y

Par intégration de la relation selon e⃗x, on conclut que :

p(x, y) =
1

2
ρω2x2 + c1(y),

avec c1(y) une fonction arbitraire qui ne dépend pas de x.
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Par intégration de la relation selon e⃗y, on déduit :

p(x, y) =
1

2
ρω2y2 + c2(x),

avec c2(x) une fonction indépendante de y.

On a donc que :

p(x, y) =
1

2
ρω2x2 +

1

2
ρω2y2 + c3,

avec c3 un constante.

En utilisant la condition p(0, 0) = p0, on en déduit que :

p(x, y) =
1

2
ρω2

(
x2 + y2

)
+ p0

Exercice 4: Lignes de courant et trajectoires des éléments �uides
On considère l'écoulement d'un �uide incompressible dont le champ de vitesse dépend de la position
r⃗ = xe⃗x + ye⃗y + ze⃗z et du temps t selon l'expression suivante :

u⃗(r⃗, t) = u0e⃗x + u0 sin(x− u0t)e⃗y

où u0 est une constante positive.

(a) Indiquer, dans le plan xy, en faisant un dessin, le vecteur u⃗ à t = 0 et aux points suivants :

(x, y) = (0, 0) (x, y) = (π/2, 0) (x, y) = (π, 0) (x, y) = (3π/2, 0)
(x, y) = (0, 1) (x, y) = (π/2, 1) (x, y) = (π, 1) (x, y) = (3π/2, 1)
(x, y) = (0, 2) (x, y) = (π/2, 2) (x, y) = (π, 2) (x, y) = (3π/2, 2)

Ensuite, à partir de votre dessin, deviner la forme de la ligne de courant passant par le point
(x, y) = (0, 0) et l'ajouter au dessin.

(b) Refaire les mêmes étapes que dans la partie a), mais pour le temps t = π/(2u0).

(c) Démontrez que les trajectoires des éléments �uides sont données par

r⃗f (t) =

x(t)
y(t)
z(t)

 =

 u0t+ x0
u0 sin(x0)t+ y0

z0


où (x0, y0, z0) est la position de l'élément �uide à t = 0.
Indication : il su�t de montrer que le r⃗f (t) donné satisfait l'équation

dr⃗f
dt

= u⃗(r⃗f (t), t)

(d) Quelle est la forme des trajectoires r⃗f (t) ? Est-ce que les lignes de courant et la trajectoire des
éléments �uides sont identiques pour cet écoulement ? Justi�ez votre réponse.

Solution:

(a) La composante de u⃗ selon x ne dépend pas de x ni de y ni du temps t, et vaut toujours
ux = u0. La composante de u⃗ selon y, à t = 0, est donnée par

uy = u0 sin(x)

et ainsi est nulle si x = 0 ou x = π, vaut u0 si x = π/2 et −u0 si x = (3π/2) (voir table
ci-dessous).
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y ⧹ x 0 π/2 π (3π/2)

0

(
u0
0

) (
u0
u0

) (
u0
0

) (
u0
−u0

)
1

(
u0
0

) (
u0
u0

) (
u0
0

) (
u0
−u0

)
2

(
u0
0

) (
u0
u0

) (
u0
0

) (
u0
−u0

)
La ligne de courant qui passe par le point (0, 0) a une forme sinusoïdale le long l'axe x, voir
le dessin.

(b) La composante de u⃗ selon y, à t = π/(2u0), est donnée par

uy = u0 sin(x− π/2) = −u0 cos(x)

et ainsi est nulle si x = π/2 ou x = 3π/2, vaut u0 si x = π et −u0 si x = 0 (voir table
ci-dessous).

y ⧹ x 0 π/2 π (3π/2)

0

(
u0
−u0

) (
u0
0

) (
u0
u0

) (
u0
0

)
1

(
u0
−u0

) (
u0
0

) (
u0
u0

) (
u0
0

)
2

(
u0
−u0

) (
u0
0

) (
u0
u0

) (
u0
0

)
La ligne de courant qui passe par le point (0, 0) a une forme sinusoïdale le long l'axe x, voir
le dessin, mais, par rapport au temps t = 0, est déplacée vers droite de ∆x = π/2.

(c) Un vecteur r⃗f (t) décrit la trajectoire d'un élément �uide dans le champ de vitesse u⃗ si, et
seulement si, il satisfait la relation

dr⃗f
dt

= u⃗(r⃗f (t), t)

En utilisant l'expression de r⃗f (t) donnée dans l'énonce, le membre de gauche vaut

dr⃗f
dt

=

 u0
u0 sin(x0)

0


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et, en utilisant l'expression de u⃗, le membre de droit vaut

u⃗(r⃗f (t), t) = u0e⃗x + u0 sin((u0t+ x0)− u0t)e⃗y = u0e⃗x + u0 sin(x0)e⃗y

ce qui démontre l'égalité.

(d) Comme la composante de r⃗f (t) selon e⃗z est constante par rapport au temps, le mouvement
se déroule dans le plan xy. La trajectoire est une ligne droite, passant par le point (x0, y0),
vu que les composantes de r⃗f (t) selon e⃗x et e⃗y dépendent linéairement du temps. Ainsi la
forme de r⃗f (t) est di�érent de la forme sinusoïdale des lignes de courant.

Exercice 5: Dérivation de l'équation de continuité (description Lagrangienne)
(a) Soit f(r⃗, t) un champ scalaire et V (t) un volume qui se déplace avec le champ vectoriel de

vitesse u⃗(r, t). A partir de la règle de Leibniz, donnée ci-dessous :

d

dt

y

V (t)

fdV =
y

V (t)

∂f

∂t
dV +

{

S(t)

fu⃗ · dS⃗

avec S(t) la surface entourant le volume V (t), démontrez la relation suivante :

d

dt

y

V (t)

fdV =
y

V (t)

(
D

Dt
f + f(∇⃗ · u⃗)

)
dV

où D
Dt =

∂
∂t + (u⃗ · ∇⃗) dans l'intégrale du membre de droite est la dérivée convective.

(b) Dans le cours, on a dérivé l'équation de continuité ∂ρ
∂t + ∇⃗ · (ρu⃗) = 0 en appliquant le principe

de la conservation de masse à un volume V �xé dans le temps (description Eulérienne) et en
l'absence de toute source/perte.

Dérivez l'équation de continuité en considérant un volume V (t) qui se déplace avec l'écoulement
(description Lagrangienne).

Solution:

(a) Avec le Théorème de la Divergence on peut écrire :

{

S(t)

fu⃗ · dS⃗ =
y

V (t)

∇⃗ · (fu⃗)dV

En utilisant la formule :

∇⃗ · (fu⃗) = u⃗ · ∇⃗f + f(∇⃗ · u⃗) (Série 1, Exo 1 (a))
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Et en sachant que u⃗ · ∇⃗f = (u⃗ · ∇⃗)f , on obtient :

{

S(t)

fu⃗ · dS⃗ =
y

V (t)

(
(u⃗ · ∇⃗)f + f(∇⃗ · u⃗)

)
dV

On trouve donc :

d

dt

y

V (t)

fdV =
y

V (t)

∂f

∂t
dV +

{

S(t)

fu⃗ · dS⃗

=
y

V (t)

(
∂f

∂t
+ (u⃗ · ∇⃗)f + f(∇⃗ · u⃗)

)
dV

=
y

V (t)

(
(
∂

∂t
+ u⃗ · ∇⃗)f + f(∇⃗ · u⃗)

)
dV

=
y

V (t)

(
D

Dt
f + f(∇⃗ · u⃗)

)
dV

(b) En absence de toute source/perte, la masse dans le volume V (t) ne varie pas au cours du
temps. Donc :

dm

dt
=

d

dt

y

V (t)

ρ(r⃗, t)dV = 0

Avec le résultat de (a), on peut écrire :

y

V (t)

(
Dρ

Dt
+ ρ(∇⃗ · u⃗)

)
dV = 0

Ceci est valable pour n'importe quel volume V (t) et on conclut que :

Dρ

Dt
+ ρ(∇⃗ · u⃗) = 0

Avec la dé�nition D
Dt =

∂
∂t + (u⃗ · ∇⃗), on trouve :

∂ρ

∂t
+ (u⃗ · ∇⃗)ρ+ ρ(∇⃗ · u⃗) = ∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0

Qui est l'équation de continuité dérivée dans le chapitre 2.3.1 du cours.
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