Physique Générale : Fluides et électromagnétisme (MA) — Prof. C. Theiler

17 Mars 2025 Masson Vincent

Corrigé 4

Exercice 1: Analyse dimensionnelle
Une méthode trés importante en physique est I'analyse dimensionnelle. Les lois de la physique s'ex-
priment sous forme d’équation du type :

Membre de gauche = Membre de droite

Une telle égalité implique que :

— Les deux membres sont de méme nature c'est-a-dire qu'ils sont tous deux soit des scalaires, soit
des vecteurs, soit des tenseurs de méme ordre.

— Leurs dimensions sont identiques.

Assurez-vous que la formule f: —ﬁp vérifie ces deux conditions, avec fune densité volumique de

force.

Solution:
On vérifie alors que
— La nature des quantités & gauche et & droite est la méme : Il s’agit du vecteur de force
a gauche et du gradient de la pression a droite. Le gradient d'un scalaire est bien un
vecteur et ce point est alors satisfait.
— Les unités doivent étre les mémes. A droite, la pression peut étre exprimée par une force
par unité de surface, tandis que le gradient est une dérivée spatiale et a donc I'unité de
I'inverse d’une longueur. f doit alors forcément étre une force par unité de volume :

f=Vp
F_1F_ 7 _ 7
V. LS LS V
Avec F une force, V un volume, L une longueur et S une surface.

Exercice 2: Théoréeme de la Divergence

(a) Soit un champ vectoriel @ stationnaire définit dans R® muni d'un repére orthonormé O,,.. Ce
champ vectoriel est défini tel que 4(7) = (ug, uy, u;) avec (uy, uy,u;) = (1,0,0), V(z,y, 2) €
R3. Dessinez le champ vectoriel dans le plan z = 0. Que vaut la divergence V-a?

(b) Soit un cube d'aréte a, surface S et volume V. Deux sommets sont en (0,0,0) et (a,0,0).
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(c) Refaites le calcul de §f 1 - dS pour @ = (x,0,0) et vérifiez que le résultat est équivalent a
[[f - @av
1%

Solution:

(a) Le champ vectoriel sur le plan z = 0 est représenté dans la figure ci-dessous :
AZ

SN
N

- Ouy ~ Ouy  Ou,

Ox oy + 0z

Toutes les dérivées partielles sont nulles parce que le champ vectoriel @ est constant sur le
plan. Donc V - 4 = 0.

(b) L’intégrale du champ 4 sur la surface latérale du cube est nulle. L'intégrale peut étre
décomposée comme la somme des intégrales sur chaque surface latérale :

fpa-as= [+ ]f+ [+ [f+ ]+ ]| a-as
S Sz1 Sz2  Sy1  Sy2  S:1 0 S:e2



La fonction & intégrer est définie comme le produit scalaire entre la vitesse du fluide @ de
norme unitaire et ’élément de surface dS :

i -dS = dS cos(6)

avec 0 'angle entre les vecteurs u et ds.
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Cette expression se simplifie quand les deux vecteurs sont perpendiculaires (vitesse paralléle
a la surface) :

- dS = dS cos(90°) = 0
et quand ils sont paralleles entre eux (vitesse perpendiculaire a la surface, # = 0° ou
0 = 180°) :

i -dS = dS cos(0°) = dS

@-dS = dS cos(180°) = —dS

Donc, le signe est +1 si ds et @ pointent dans la méme direction, -1 s’ils pointent dans les
directions opposées.

Puisque le champ de la vitesse est paralléle aux faces du cube Sy 1, Sy2, 5.1 et S, les
intégrales correspondantes sont nulles. Les deux autres intégrales se compensent :

iﬁﬁ-d§::£fﬁ-d§+—£fﬁ-d§
S Sz Sz,2
= [[(~as)+ [[ as
Sz,1 Sz,2

—-5+8
=0

Comme V - @ = 0, on trouve bien J]:]"V(ﬁ -@)dV = 0. Les résultats sont donc consistants
avec le Théoréme de la Divergence.

(¢) La situation est trés similaire a ci-dessus; la seule différence est que maintenant la norme
du champ vectoriel dépend de la position et les contributions & I'intégrale par les faces Sy 1
et S; 2 ne se compensent plus :

Sz,1 52,2
= [[0ds+ [[ aas
Sz,1 Sz,2
—S.q
=a’



L’évaluation de l'intégrale volumétrique de V - @ conduit au méme résultat :
— Ouy
w(v L@V = jﬂ LV
= JJJav
v
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avec dV I’élément de volume.

Exercice 3: Champ de Vitesse
Nous considérons I'écoulement d’un fluide parfait et incompressible (p = pg = constante) avec le
champ de vitesse suivant :

U(r,t) = —wyey + wré,

w est une constante positive qui s'exprime en s~ 1.

(a) Indiquez, dans le plan xy, le vecteur 4 aux points suivants :

(z,y) = (1,0); (z,y) = (2,0); (z,y) = (0,1); (z,y) = (0,2);
(z,y) = (-1,0);  (z,y)=(-2,0);  (2,9)=(0,-1);  (z,y)=(0,-2);
Pour les besoins du dessin, supposez w = 1.
Que pouvez-vous dire sur la valeur de %?
Déterminez I'accélération d’un élément fluide en un point (z,y) arbitraire.
Démontrez que ce champ de vitesse satisfait I'équation de continuité.
Utilisez I'équation d'Euler pour déterminer I'expression du champ scalaire de pression p(7,t).

Négligez la force de gravité dans I'équation d’Euler et supposez que p = pg en 7 = 0.

Solution:

(a) La représentation du vecteur vitesse aux points demandées et avec la mise a 1’échelle sug-
gérée est visible sur la figure ci dessous.
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(b) L’écoulement étant caractérisé par un champ de vitesse ne dépendant pas du temps, I’écou-

lement peut étre considéré comme stationnaire. On a donc % = 0.



(¢) L’accélération d'un élément fluide est donnée par la formule
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Or on a vu precedement que % =0, donc

Donc

(d) Le fluide étant incompressible, sa densité volumique est constante et on a p = pg. L’équation

de continuité s’écrit :
op = op =

=+ V- (pl) = == +pV i+ Vp

Il s’agit donc de s’assurer que pﬁ -1 = 0, ce qui est bien le cas :

- Ouy  Ouy
i = ~ Y = 1
pV - p<ax+ay> 0 (1)

L’équation de continuité est donc bien satisfaite !

(e) Le fluide étant parfait, il n’y pas d’effets liés a la viscosité. En négligeant la gravité, I’équa-

tion d’Euler nous donne o
p<8jj+ (z-9) u> — %

Donc, I’écoulement étant stationnaire (%f =0), on a

=

p(ﬁﬁ)a:—vp

p (ﬂ'~ ﬁ) @ a été calculé dans la question (c) de cet exercice.

Projetons maintenant I’équation d’Euler selon les directions €, et €, :

— selon &, : —pw?r = —%
> . 2, _ _Op
— selon €, 1 —pw?y = —5-

Par intégration de la relation selon €, on conclut que :

1
p(x,y) = §Pw2$2 +c1(y),

avec ¢1(y) une fonction arbitraire qui ne dépend pas de z.



Par intégration de la relation selon €y, on déduit :

1

p(z,y) = §pw2y2 + co(),

avec ca(z) une fonction indépendante de y.

On a donc que :
1

1
pw,y) = Spw'a® + Spwy’ + e,
avec cs un constante.
En utilisant la condition p(0,0) = pg, on en déduit que :
1

p(z,y) = §pw2 (z® +y*) + po

Exercice 4: Lignes de courant et trajectoires des éléments fluides
On considére I'écoulement d'un fluide incompressible dont le champ de vitesse dépend de la position
T = T€, + Y€y + 2€, et du temps ¢ selon |'expression suivante :

ﬁ(ﬁ t) = up€; + U SiH(SL‘ — uot)é'y

oll ug est une constante positive.
(a) Indiquer, dans le plan zy, en faisant un dessin, le vecteur @ a t = 0 et aux points suivants :
(z,y) = (0,0) (z,y)=(7/2,0) (2,y)=(m,0) (2,y)=(37/2,0)
(CL‘,y) = (07 1) (I,y) = (71—/27 1) (:c,y) = (777 1) (x,y) = (37’[‘/2, 1)
(2y) = (0,2) (2y) = (1/2,2) (2.y) = (1,2) (2.) = (37/2,2)
Ensuite, & partir de votre dessin, deviner la forme de la ligne de courant passant par le point
(z,y) = (0,0) et I'ajouter au dessin.
(b) Refaire les mémes étapes que dans la partie a), mais pour le temps ¢ = 7/(2uy).

(c) Démontrez que les trajectoires des éléments fluides sont données par

x(t) ugt + o
Ff (t) = y(t) = | up Sin(ilio)t + Yo
2(t) 20

ou (o, Yo, 20) est la position de I'élément fluide a ¢ = 0.
Indication : il suffit de montrer que le 7(t) donné satisfait I'équation

dry

— =u(rr(t),t

(d) Quelle est la forme des trajectoires 7'¢(t) ? Est-ce que les lignes de courant et la trajectoire des
éléments fluides sont identiques pour cet écoulement? Justifiez votre réponse.

Solution:

(a) La composante de @ selon x ne dépend pas de x ni de y ni du temps ¢, et vaut toujours
Uy = ug. La composante de u selon y, & t = 0, est donnée par

Uy = ug sin(x)

et ainsi est nulle si x = 0 ou = = 7, vaut ug si x = /2 et —ug si z = (37/2) (voir table
ci-dessous).
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La ligne de courant qui passe par le point (0,0) a une forme sinusoidale le long l’axe z, voir

le dessin.
Champ de vitesse, t = 0 Champ de vitesse, t = #/(2 “o)
3 3
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La composante de 4 selon y, a t = 7w/(2ug), est donnée par
uy = ug sin(x — 7/2) = —ug cos(z)

et ainsi est nulle si = 7/2 ou & = 37w/2, vaut ug si © = m et —up si = 0 (voir table

ci-dessous).
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La ligne de courant qui passe par le point (0,0) a une forme sinusoidale le long I’axe z, voir
le dessin, mais, par rapport au temps t = 0, est déplacée vers droite de Ax = 7/2.

Un vecteur 7f(t) décrit la trajectoire d’'un élément fluide dans le champ de vitesse 1 si, et
seulement si, il satisfait la relation

En utilisant 'expression de 7(¢) donnée dans 1’énonce, le membre de gauche vaut

JF

=L = (1))
dr o
all - up sin(zo)
dt 0



et, en utilisant I’expression de @, le membre de droit vaut
W(rp(t),t) = uo€y + uosin((uot + o) — uot)€y = up€y + ug sin(xo)ey

ce qui démontre 1’égalité.

(d) Comme la composante de 7°(t) selon €, est constante par rapport au temps, le mouvement
se déroule dans le plan xy. La trajectoire est une ligne droite, passant par le point (zg, yo),
vu que les composantes de 7'¢(t) selon €, et €, dépendent linéairement du temps. Ainsi la
forme de 7¢(t) est différent de la forme sinusoidale des lignes de courant.

Exercice 5: Dérivation de I'équation de continuité (description Lagrangienne)
(a) Soit f(7,t) un champ scalaire et V(¢) un volume qui se déplace avec le champ vectoriel de
vitesse u(r,t). A partir de la régle de Leibniz, donnée ci-dessous :

d of L .a
=) rav = [ff Spav + §f ra-as
V(t) V(t) S(t)
avec S(t) la surface entourant le volume V' (t), démontrez la relation suivante :

d D O
L= (e )

ou & = % + (@i - V) dans l'intégrale du membre de droite est la dérivée convective.
V(t
® V(t+At)
u(r,t)

(b) Dans le cours, on a dérivé I'équation de continuité % +V- (pl) = 0 en appliquant le principe
de la conservation de masse & un volume V fixé dans le temps (description Eulérienne) et en
I'absence de toute source/perte.

Dérivez |'équation de continuité en considérant un volume V' (¢) qui se déplace avec I'écoulement
(description Lagrangienne).

Solution:
(a) Avec le Théoreme de la Divergence on peut écrire :
@S fii-dS = fﬂﬁ (fi)dV
S(t) V()
En utilisant la formule :

V- (fit)=a@-Vf+ f(V-@) (Série 1, Exo 1 (a))



Et en sachant que @ -V f = (4 - ﬁ)f, on obtient :

ff 2-05 = [[f (%

S(#) V()

VF+ F(V - u))dv

On trouve donc :

= Uf fav = ﬂf “Lav + g fi-dS

V(t)
= ﬂj <at+(ﬁﬁ)f+f(ﬁa)> dv
V(i)
~[[f (G +a-9+5 @) av
V(t)

D =
=[J (th + (V- u)> v
V(t)
(b) En absence de toute source/perte, la masse dans le volume V(¢) ne varie pas au cours du

temps. Donc :
dt dtﬂjpr £)dV =0

Avec le résultat de (a), on peut écrire

Jﬂ<ﬂmungo

Ceci est valable pour n’importe quel volume V' (¢) et on conclut que

Dp S
Di +p(V-u4)=0

Avec la définition 5 = % (- V), on trouve :
P (@-V)p+p(V-@l) = 9. (pii) =0
ot ot

Qui est ’équation de continuité dérivée dans le chapitre 2.3.1 du cours



